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ABSTRACT

We introduce a continuous time method to anadyze the response of median, pseudomedian, average
(mean), and midrange filters to certain periodic Sgnds. The filter definitions are generdized to continuous time,
and these definitions are applied to periodic Sgnds such as triangle, square, and snusoidd waves of varying
frequencies. These operations yield “amplitude response’ measures which are andytic functions of the frequency
of the input Sgndl. In addition, a “corrdation” measure is defined to indicate the level of distortion introduced by
eech filter. Examples of this andyss for the median, pseudomedian, average, and midrange filters show
amilarities and differences anong them.

Although these theoreticd measures do not perfectly demondrate the performance of the discrete time
filters, continuous time andys's does provide vauable ingghts into the filter behavior. The response of the
continuous time median filter shows its susceptibility to high frequency periodic noise and proves, agan, the
exigence of infinite-length bi-valued fast-fluctuating roots of this filter. The pseudomedian filter, in contragt,
completdy attenuates amplitude-symmetric periodic sgnas above a certain frequency, and has no infinite-length
fad-fluctuating roots.  Continuous time filter andogues ae therefore an important theoretica tool for
understanding the behavior of both linear and nonlineer filters.

1. INTRODUCTION

Most image and sgnd processing filters are defined in discrete time; that is, they operate on a finite
number of samples within a finite-szed window. However, as the number of samples in the filter window
incresses to infinity, some patterns in the behavior of the filters become evident. The behavior of filtersacting on
periodic Sgnds is especidly interesting.  This paper develops the continuous time definitions for the median,
pseudomedian, average (mean), and midrange filters and shows their responses to a variety of periodic sgnds.
Although the pseudomedian filter was developed to mimic the median filter, in many ways its response to periodic
sgnds resembles that of the midrange filter more closdy, while the response of the median filter resembles that of
the average filter more closdy. The "amplitude response’ of a continuous time filter is Smply taken to be the pesk
response of the filter as a percentage of the pesk amplitude of the input periodic Sgnd. Thisis not equivdent to
the amplitude response as defined by linear analysis, but linear techniques are not gpplicable to nonlinear filters.
To further darify the differences among the filters, a corrdation measure is defined to determine the amount of
digtortion induced by filtering. It is impossble to draw specific conclusions @out the behavior of digitd filters
from the continous time andyss, but comparing results for discrete and continuous time reveds sgnificant
amilarities
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2. CONTINUOUSTIME FILTER DEFINITIONS

2.1. Pseudomedian Filter
The pseudomedian and median filters are nonlinear techniques which are noted for their ability to preserve
edges and reduce impulse noise in sgnas and images.  The pseudomedian filter, introduced in 1985 by Pratt,
Cooper, and Kabirl, is based upon concepts from mathematica morphology. It is defined as the average of the
maximum of the minima of a s&t of subsequences and the minimum of the maximum of the same st of
subsequences.  The subsequences considered in a one-dimensona sgnd, for afilter window sze of 2N+1, are
dl the contiguous subsequences of Sze N+1. For example, the pseudomedian of a signa with vaues of
{ab,cd,e} indde afilter window of Szefiveis
PMED {ab,c,d,e} =0.5¢max{ min(ab,c), min(b,c,d), min(cde)}
+ 0.5« min{ max (ab,c), max(b,c,d), max (c,d,e) }
Pratt? defines the operators maximin and minimax, which are exactly the two "haves' of the pseudomedian
filter:
PMED {ab,c,d,e} =0.5¢maximin{ab,c,de + 0.5+ minimax {ab,c,d,e
The connection of the pseudomedian filter to mathematical morphology is darified by this smplification, snce the
maximin is equivaent to the grayscale morphologicd operator open, and the minimax is equivaent to the close
operator. The pseudomedian filter is thus the average of the morphologica open and close. This reault is
demonstrated in more detail and for two dimensions by Schulze and Pearce3.

Extension of the definition of the pseudomedian filter to continuous time signds may be achieved directly
from the morphologica definition, or by smply converting the discrete maximum and minimum operators to the
continuous supremum and infimum operators and consdering al subsets of length one-haf the window length
indde the window. This gives the following expresson for the continuous time pseudomedian, PMED¢, of an

input Sgnd f(t) a timet =ty with window sze w.

PMEDgt {f([to-W/2, to*W/2])} =05« sup ({ inf (f([to+h-W/2, to;+b]) ), 0=b =wi2} )
+05+inf ({ sup (f([to+b-W/2, tg+b]) ), 0=b =w/2} )

2.2. AverageFilter

Before developing the continuous time definition of the median filter, it is hepful to examine the definition
of the continuous time average, or mean, filter. In discrete time, the output of this filter is smply the mean of dl
samples in the filter window. In continuous time, acting on a signd f(t) with awindow of length w centered at t,,

the output of the averagefilter is
1 [ tew2
MEAN  {f([t;W/2, t;+wW/2])} = W / f(t) dt
tO'W/Z

Letting &ty) denote the average-filtered vaue of f(t) at t=t,, the above expression may be rearranged to
yidd aform which defines the continuous time median:

t w2

[ 1o -atd] di=c

tyw/2



This equation achieves a baance of area of the function above and below its mean aty) over the window. In

contrast, the median achieves a balance of the length (or number of vaues) of the function above and below its
vaue in the filter window.

2.3. Median Filter

One way to achieve the balance of values above and below the median is to apply the sgnum function to
the difference between the input sgna and proposed median value. The sgnum function returns avaue of +1 for
arguments greater than zero, O for arguments equa to zero, and -1 for arguments less than zero. Thus dl vaues
of the input greater than the median are assigned +1, and dl vaues less than the median are assigned -1. These
two areas should cancd out, just as in the preceding expresson for the average filter. Letting m(ty) denote the
median-filtered vaue of f(t) a t=t,, we have:

t w2

/ sgn{ f(t) -m(ty)} dt=¢

tew/2

However, this definition is not vaid when the input signd f(t) takes on the median vadue an infinite number
of timesingde the window to-w/2 =t = to+tw/2. When thisistrue, there will sometimes exist no vaue of m(t,) for
which the above equdity holds. In this case, the vaue of the integrd will jump from a vaue less than zero for
m(ty) less than a certain vaue my, to avaue greater than zero for m(ty) greater than m,. The vadue my, isthen the
median of the sgnd in the window and may be considered to be the vaue of m(ty) that minimizes the absolute
vaue of the integrd in the above expresson. The median of the sgnd is thus the vaue m(ty) that minimizes the
expression:

tgtw/2
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Ancther stuation which may cause difficulty in computing the continuous time median is an input sgnd
with jump discontinuities. For example, when a perfect edge from a congtant value O to a condant value 1 is
centered in the filter window, the above integral expression is equd to zero for dl 0 <m(ty) < 1. Thisgtuaionis
andogous to a discrete time median of an eventszed window with haf the values equd to 0 and hdf the vaues
equa to 1. In the discrete time case, the median is usudly taken to be the average of the two vaues spanning the
median. This definiton may be extended to continuous time smply by averaging the two vaues of m(ty) which
limit from above and below the vaues for which the integrd expression is zero. For the periodic Sgnds used in
this paper as input, such inderminate values occur only at isolated points and the specific handling of this Situation
does not affect the results.

Fitch, Coyle, and Galagher4 described an "andog median filter" in 1986 which is identica to the
continuous time median filter described in this pgper. Using a different derivation than tha given here, they give
two digtinct definitions which give the upper and lower limits in the indeterminate Situation described above, and
resolve the difference in favor of the upper limit. Their pgper dso formaizes the relationship between the discrete
time and continuous time filters.



2.4. MidrangeFilter

The midrange filter outputs the average of the minimum and maximum vaues in the filter window. This
filter generdizes very eadly to continuous time by using the infimum and supremum.  The midrange filter output,
MIDRt, of aninput sgnd f(t) at t=t, for window szew is.

MIDRt {f([to-W/2, to+Wi2])} = 0.5+ sup { f([to-W/2, to+wi2]) } + 05« inf { f([to-W/2, to+W/2]) }

The midrange filter is neither good at suppressing impulses nor preserving edges, but yields good results
on sgnds corrupted by uniformly-distributed noise. Because of it is the average of two extremum operations, it
resembles in some dtuations the pseudomedian filter. In fact, the midrange filter is the average of the
morphologica erosion and dilation of asgna or image.

3. RESPONSE TO PERIODIC SIGNALS

3.1 Assumptions

In this section we derive a type of "response curve' for the four filters under consderation to three
periodic waves. triangle waves, snusoidd waves, and square waves. Severd assumptions underlying the
response curves need to be clarified before proceeding, however.

Fird, the reponse curves developed here do not give the filter response to a combination of frequencies,
but ingtead only to a Sngle frequency of a particular periodic Sgnd. The curves are derived by determining how
the response of the filter changes as the frequency of a sngle periodic signd is varied. The superposition
principle, used extengvely for linear filters, does not gpply to the nonlinear filtersin this study.

Second, "response” is used here only to denote amplitude and phase of the output as compared to the
input. Any distortion induced by the filter is not consdered in the response andlys's; the distortion andyssusing a
correlation measure provides information on these aspects of the filter behavior. The "amplitude response” vaues
in this paper give the ratio of the pesk vaues of the filtered signd to the pesk vaues of the unfiltered Sgnd. Many
of the filtered Sgnds exhibit shgpe digortion, epecialy medianfiltered sgnas and dl filtered signas with very
amdl amplitudes. The filtered signds aways have the same basc period as the input sgnds, however. The
"phase response” is assumed to be the phase relaionship between filtered and unfiltered sgna pesks, under this
assumption, the phase of the filtered signd is dways 0 or 180°. To smplify the presentation of the data, we
represent a filtered signa 180° out of phase with the origind as having a negative amplitude response, which isthe
practical effect of this phase shift.

Third, each filter responds differently to different types of periodic Sgnds. This is clearly because the
filters are ronlinear, but is aso duein smdl part to the assumptions used to define "response.” The resultsindicate
amilarities in a filter's response to many types of periodic signas that reved some generd characteridtics of the
filter, however.

Fndly, the response of actud discrete time filters varies sgnificantly from the responses shown in this
section. These differences arise not only from assumptions inherent in converting discrete time filters to continuous
time but dso from sampling and quantization effects.



3.2. Responseto Triangle Waves

Oneinput Sgnd for which it is easy to determine the pesk output values of the various filtersis the triangle
wave. In fact, the response may be represented in a closed form as a function of the input sgnd frequency. For
the pseudomedian filter, the ratio of the pesks of the filtered and unfiltered signas will be represented by R(f),
where f is the frequency of the signd given in units of cycles per filter window length, which will be abbreviated
Y-

Pu(f) = 1- T/, 0=f=2%/,
0, f>2%)

The response of the median filter to triangle waves, My(f), is quite different:

My(f)= 1-f, 0=f=11%3%),
f/2' 1, 11/3Cylw<f = 22/5Cy/W
1- /3, 225y, <f =337/,
€tc.
Or, more formally,
_ f 2n+1
M) = 150 2n+4+1)%£f£ 2n+1+4+3%

2n+2
4n+5

f
m 2n+1+m)%£f£[2n+2+

wheren=0,1,2,3, ...
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These response curves areillugtrated in Figure 1 below.
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Figure 1. Response of pseudomedian and median filters to triangle waves.

Similar response curves derived for the average and midrange filters offer comparisons between these
filters and the median and pseudomedian filters. The response of the average filter to triangle waves, Ay(f), is

Auf)= (DN [-f+(@2n+1) - N0+, nNYhy =f=(n+1) Yy
wheren=0,1,2,3, ...



The response of the midrange filter to triangle waves, R(f), issmply:
Ry(f)= 1-f, 0=f=1%/,
0, f>1%/,

These response curves areilludrated in Figure 2 below.
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Figure 2. Response of midrange and average filters to triangle waves.

A comparison of Figures 1 and 2 demondtrates that the median and average filters have smilar responses
to triangle waves, while pseudomedian and midrange filters dso have closdly rdated responses. In fact, a
midrange filter has the identical peak response to a pseudomedian filter with awindow twice as wide as thet of the
midrange filter. Thisfact is reated to the effective window size change created by sequentia eroson and dilation
when computing the morphologica open and closs3.

3.3. Sinusoidal Waves

Sinusoida waves resemble triangle waves in many respects, and therefore one would expect the response
curves of the filters to snusoidd waves to be amilar the curves for tiangle waves. Indeed, the most obvious
difference between the response curvesis snusoida curves introduced where there were previoudy straight lines.
The pseudomedian filter response to sinusoidal waves, Pgn(f), is given by:

Psn(f) = Yo (1 + cosPf/y), 0=f=29%/,
0, f>2¢%/,
For the median filter acting on sinusoidd waves, the response Mg (f) is
Mgn(f) = cos (Pf/y), 0=f=11%3%),
-cos (Pf/y), 1 Y30y, <f =225},
cos (P/g), 225y, <f =337y
etc.

Or, more formdly,



= cos|-2f _2n_
Mn(f) = COS(4n+2 ’ (2” T a1

2n+1
%£f£(2n+1+4 +3) A/

pf 2n+2) o
-CoS|z7l (2n+ 145 )%£f£ N+ 2+ % y
These curves are plotted in Figure 3 below.
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Figure 3. Response of pseudomedian and median filters to Snusoida waves.

Figures 1 and 3 show the amilaities in these filters responses to triangle and snusoida waves. To
complete the comparison with the average and midrange filters, the expressons for these filters responses to
snusoida waves are given below and plotted in Figure 4. Agn(f) isthe response of the average filter to Snusoida
waves and Ry (f) is the response of the midrange filter to Snusoidal waves.

Agn(f) = 9nc pf, f=0
Rsn(f) = Y5 (1 + cospf), 0=f=10%),
0, f> 10y},
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Figure 4. Response of average and midrange filters to sinusoidal waves.



The above results show some very dgnificant amilarities and differences between the filters  The
pseudomedian filter has a uniformly decreasing response from unity to zero to snusoidal and triangular waves as
the frequency increases from zero to two cycles per window. At frequencies above two cycles per window, the
pseudomedian filter dways gives zero output (in continuous time) for triangle and snusoidd waves. More
generdly, the pseudomedian filter reduces any verticaly symmetric periodic signd of frequency grester than or
equa two cycles per window to a congtant output equa to the point of symmetry. The midrange filter gives a
smilar result, except that it produces a congtant output for al frequencies at and above one cycle per window.
The median filter, however, does not block high frequency sgnds, and in fact exhibits phase inverson (180°
phase shift) for frequencies between one and two cycles per window (and also for 3-4 %/, 5-6 %/, and s0
forth). The average filter has responses smilar to those of the median filter for triangle and sSnusoida waves,
including phase inverson in the same frequency ranges. These Smilarities are understandable since both the
median and average filters are inherently low-pass and these examples do not demondtrate the edge-preserving or
impulse-removing abilities of the median filter.

3.4. Square Waves

The response of the filters to square waves is easy to andyze. The median filter may only have two
digtinct output vaues, snce there are only two different input values for a square wave, and the pseudomedian
and midrange filters may have only three distinct output values. The average filter, however, is not smilarly limited
initsoutputs. The responses of the four filters to square waves are given below.

Pseudomedian:  Pgy(f) = 1, 0=f<1%/y
0, f>1%),
Median: Mgq(f) = 1, (2n) eY/y < f < (2n+1) oY)y,
-1, (2n+1) oY, < f < (2n+2) oY)y
wheren=0,1,2,3, ...
Midrange: Rsg(f) = 1, 0=f<1,cy),
0, f> 1y,
Average: Agqy(f) = 1- 20, (2n-1y) &y, < f < (2n+11)) oYl

-1+ (D) (2n+1)) ey, < f < (2n3))) oY/,
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Figure 5. Response of pseudomedian and median filters to square waves.
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Figure 6. Response of midrange and average filters to square waves.

Once again, the midrange and pseudomedian filter have responses differing by a factor of two in
frequency. The median and average filters, however, respond quite differently to square waves. They both il
exhibit phase inverson, but the median filter does not attenuate square waves a dl. Thisis because square waves
are bi-vaued and therefore are either infinite-length roots or oscillatory roots of the median filterS. In contrast, the
output of the pseudomedian filter for fast-fluctuating (greater than 2 ¢¥/,,) bi-vaued sgndsis a congant vaue.

The relationship between the continuous time and discrete time median filters has been formalized by
Fitch, Coyle, and Gdlagher4. The relationship between the other continuous and discrete filters has not been
demongtrated, but results given by SchulzeS show excdlent agreement between the continuous time filters and
discrete time filters with large window szes. Discrete filters with smdler window sizes show sgnificant variance
from the continuous time results, but most of the differences can be easily explained by sampling, quantization, and
windowing effects. In any case, the generd properties of the filters demongtrated in continuous time are generdly
vaid in discrete time aswll.

4. DISTORTION ANALYSIS

The response curves given in the preceding section are only a comparison of the amplitudes of the input
and output sgnas and provide no information about how extensvey the filters modify the shapes of the
waveforms. To supplement the amplitude information with information about the ditortion induced by the filters,
we investigated the use of the datistica correlation between the input and output. However, the corrdation is
very sendtive to amplitude and phase differences between the signd's, so a correlation taken directly between the
input and output yields much the same result as the above response curves. To restrict the measure only to the
change in shape of the waveform, the output sgnd is adjusted to compensate for changes in the amplitude and
phase of the signd. The resulting corrdation measure is redtricted to the range 0 to 1, since negative correlaion
indicates a phase shift. Correlation equal to +1 indicates exact correspondence between sgnals, while corrdation
equal to O indicates no correspondence at dl, as between a periodic signd and its DC component.

Congder a continuous input sgnal x(t) and the corresponding filter output y(t), both with period T. Define
the gain of thefilter operating on the signd x(t) to be:



- 7,
/ [y() %t
GAIN = ¥

k+T 5
[ x)
Yk

where k is an arbitrary congtant. For frequencies where the output signd is 180° out of phase with the input
sgnd, this GAIN figure is negated to adjust for the phase shift. Thisisonly valid for verticaly symmetric periodic
signds such as those consdered in this paper. The corrdation figureis then:
%
2

k+T 5
1
f X(t) 'my(t) dt
k

k+T }/2
[ [x(0)] > dt)
7k

Unfortunately, deriving expressons for the gain and corrdation in continuous time is extremdy difficult,
since the vaue of the output must be computed at al times for al frequencies for each sgnd and filter, instead of
merely deducing the pesk amplitude of the output. To give some indication of how the four filters digtort the
sgnds conddered in this paper, we have computed the gain and corrdation digitaly (usng summétions over one
period instead of integrals) for 75-widefilters. The triangle, Snusoidal, and square wave signals were considered
at frequencies from 0 to 4 ¢/, in increments of 0.05 ¢Y/,,. The results are shown in Figures 7, 8, and 9 below.

We chose very wide filter windows to minimize the discrete time effects  These results show that the
pseudomedian filter has very high corrdation (that is, very low distortion) throughout most of its passband for al
three input Sgnals. The median filter distorts the triangle and Snusoidal waves much more than the square wave,
which is expected from its edge preserving and impulse removing abilities. The averagefilter isthe best of the four
filters a presarving the snusoida waveform, which is understandable because this filter smooths Sgnasto create
only gradud changes, much like those in the origind snusoid. The midrange filter causes particularly high
distortion on the square wave because it destroys edges. The distortion andysis shows that the pseudomedian
filter digtorts these input Sgnds in its passband less than any of the other filters except for the average filter on
Snusoidal waves.

7

CORR=1] -

5. CONCLUSIONS

The continuous time filter andys's demondrates the smilarities and differences anong the pseudomedian,
median, average, and midrange filters. Comparing only the pesk amplitude response of the filters to triangle,
snusoidd, and square waves highlights rel ationships between the pseudomedian and midrange filters and between
the median and average filters. Digtortion analys's, however, highlights the differences in responses between the
edge-preserving filters (median and pseudomedian) and the edge-destroying filters (average and midrange). The
pseudomedian and midrange filters are shown to completely attenuate any symmetric periodic signd above a



certain frequency (2 and 1 cycles per window length, respectively), while the median and average filters aways
give some periodic, often phase-inverted, output to such high-frequency inputs. In addition, the pseudomedian
filter digtorts periodic sgnas much lessin most cases than the other filters.

Although the continuous time analysis of the filters cannot be directly gpplied to filters operating in discrete
time, the genera behavior of the filters relative to one another remains the same in the discrete case. For example,
the response of the median filter to square waves clearly shows why infinite-length fagt-fluctuating bi-valued roots
and oscillating roots exist for thisfilter in discrete time. The response of the pseudomedian filter to square waves
in continuous time indicates that it does not have any such fagt-fluctuating roots, and indeed thisis the cassf. This
paper has dso focused exclusvey on the filters in one dimension, so direct gpplication of these results to two
dimengions is not possble. Again, though, the generd behavior the filters demondrate in this one-dimensond
analyss has implications for ther two-dimensiona behavior, especidly with respect to their susceptibility to high-
frequency noise and the amount of distortion they induce in an image.
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Figure 9. Corrdation curvesfor 75-wide filters acting on square waves. (Legendsasin Fig. 7.)




