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ABSTRACT 
 
We introduce a continuous time method to analyze the response of median, pseudomedian, average 

(mean), and midrange filters to certain periodic signals.  The filter definitions are generalized to continuous time, 
and these definitions are applied to periodic signals such as triangle, square, and sinusoidal waves of varying 
frequencies.  These operations yield “amplitude response” measures which are analytic functions of the frequency 
of the input signal.  In addition, a “correlation” measure is defined to indicate the level of distortion introduced by 
each filter.  Examples of this analysis for the median, pseudomedian, average, and midrange filters show 
similarities and differences among them. 

 
Although these theoretical measures do not perfectly demonstrate the performance of the discrete time 

filters, continuous time analysis does provide valuable insights into the filter behavior.  The response of the 
continuous time median filter shows its susceptibility to high frequency periodic noise and proves, again, the 
existence of infinite-length bi-valued fast-fluctuating roots of this filter.  The pseudomedian filter, in contrast, 
completely attenuates amplitude-symmetric periodic signals above a certain frequency, and has no infinite-length 
fast-fluctuating roots.  Continuous time filter analogues are therefore an important theoretical tool for 
understanding the behavior of both linear and nonlinear filters. 

 
1.  INTRODUCTION 

 
Most image and signal processing filters are defined in discrete time; that is, they operate on a finite 

number of samples within a finite-sized window.  However, as the number of samples in the filter window 
increases to infinity, some patterns in the behavior of the filters become evident.  The behavior of filters acting on 
periodic signals is especially interesting.  This paper develops the continuous time definitions for the median, 
pseudomedian, average (mean), and midrange filters and shows their responses to a variety of periodic signals.  
Although the pseudomedian filter was developed to mimic the median filter, in many ways its response to periodic 
signals resembles that of the midrange filter more closely, while the response of the median filter resembles that of 
the average filter more closely. The "amplitude response" of a continuous time filter is simply taken to be the peak 
response of the filter as a percentage of the peak amplitude of the input periodic signal.  This is not equivalent to 
the amplitude response as defined by linear analysis, but linear techniques are not applicable to nonlinear filters.  
To further clarify the differences among the filters, a correlation  measure is defined to determine the amount of 
distortion induced by filtering.  It is impossible to draw specific conclusions about the behavior of digital filters 
from the continous time analysis, but comparing results for discrete and continuous time reveals significant 
similarities. 



2.  CONTINUOUS TIME FILTER DEFINITIONS 
 

2.1.  Pseudomedian Filter 
The pseudomedian and median filters are nonlinear techniques which are noted for their ability to preserve 

edges and reduce impulse noise in signals and images.  The pseudomedian filter, introduced in 1985 by Pratt, 
Cooper, and Kabir1, is based upon concepts from mathematical morphology.  It is defined as the average of the 
maximum of the minima of a set of subsequences and the minimum of the maximum of the same set of 
subsequences.  The subsequences considered in a one-dimensional signal, for a filter window size of 2N+1, are 
all the contiguous subsequences of size N+1.  For example, the pseudomedian of a signal with values of 
{a,b,c,d,e} inside a filter window of size five is: 

 PMED {a,b,c,d,e} = 0.5 • max { min (a,b,c), min (b,c,d), min (c,d,e) } 
  + 0.5 • min { max (a,b,c), max(b,c,d), max (c,d,e) } 

Pratt2 defines the operators maximin and minimax, which are exactly the two "halves" of the pseudomedian 
filter: 

 PMED {a,b,c,d,e} = 0.5 • maximin {a,b,c,d,e} + 0.5 • minimax {a,b,c,d,e} 
The connection of the pseudomedian filter to mathematical morphology is clarified by this simplification, since the 
maximin is equivalent to the grayscale morphological operator open, and the minimax is equivalent to the close 
operator.  The pseudomedian filter is thus the average of the morphological open and close.  This result is 
demonstrated in more detail and for two dimensions by Schulze and Pearce3. 

 
Extension of the definition of the pseudomedian filter to continuous time signals may be achieved directly 

from the morphological definition, or by simply converting the discrete maximum and minimum operators to the 
continuous supremum and infimum operators and considering all subsets of length one-half the window length 
inside the window.  This gives the following expression for the continuous time pseudomedian, PMEDct, of an 
input signal f(t) at time t = to with window size w. 

  
 PMEDct {f([to-w/2, to+w/2])} = 0.5 • sup ( { inf ( f([to+β-w/2, to+β]) ), 0 = β  = w/2 } ) 
  + 0.5 • inf ( { sup ( f([to+β-w/2, to+β]) ), 0 = β  = w/2 } ) 
 

2.2.  Average Filter 
Before developing the continuous time definition of the median filter, it is helpful to examine the definition 

of the continuous time average, or mean, filter.  In discrete time, the output of this filter is simply the mean of all 
samples in the filter window.  In continuous time, acting on a signal f(t) with a window of length w centered at to, 
the output of the average filter is: 

 

MEAN ct {f([to-w/2, to+w/2])} = 1
w f(t) dt

t o-w/2

t o+w/2

 
 
Letting a(to) denote the average-filtered value of f(t) at t=to, the above expression may be rearranged to 

yield a form which defines the continuous time median: 
 

[ f ( t ) - a ( t o ) ] d t = 0
t o - w / 2 

t o + w / 2 

 



This equation achieves a balance of area of the function above and below its mean a(to) over the window.  In 
contrast, the median achieves a balance of the length (or number of values) of the function above and below its 
value in the filter window. 

 
2.3.  Median Filter 

One way to achieve the balance of values above and below the median is to apply the signum function to 
the difference between the input signal and proposed median value.  The signum function returns a value of +1 for 
arguments greater than zero, 0 for arguments equal to zero, and -1 for arguments less than zero.  Thus all values 
of the input greater than the median are assigned +1, and all values less than the median are assigned -1.  These 
two areas should cancel out, just as in the preceding expression for the average filter.  Letting m(to) denote the 
median-filtered value of f(t) at t=to, we have: 

 
 

s g n { f ( t ) - m ( t o ) } d t = 0
t o - w / 2 

t o + w / 2 

 
 
However, this definition is not valid when the input signal f(t) takes on the median value an infinite number 

of times inside the window to-w/2 = t = to+w/2.  When this is true, there will sometimes exist no value of m(to) for 
which the above equality holds.  In this case, the value of the integral will jump from a value less than zero for 
m(to) less than a certain value mo, to a value greater than zero for m(to) greater than mo.  The value mo is then the 
median of the signal in the window and may be considered to be the value of m(to) that minimizes the absolute 
value of the integral in the above expression.  The median of the signal is thus the value m(to) that minimizes the 
expression: 

 

sgn { f(t) - m(to) } dt
t o-w/2

t o+w/2

 
 
Another situation which may cause difficulty in computing the continuous time median is an input signal 

with jump discontinuities.  For example, when a perfect edge from a constant value 0 to a constant value 1 is 
centered in the filter window, the above integral expression is equal to zero for all 0 < m(to) < 1.  This situation is 
analogous to a discrete time median of an even-sized window with half the values equal to 0 and half the values 
equal to 1.  In the discrete time case, the median is usually taken to be the average of the two values spanning the 
median.  This definiton may be extended to continuous time simply by averaging the two values of m(to) which 
limit from above and below the values for which the integral expression is zero.  For the periodic signals used in 
this paper as input, such inderminate values occur only at isolated points and the specific handling of this situation 
does not affect the results. 

 
Fitch, Coyle, and Gallagher4 described an "analog median filter" in 1986 which is identical to the 

continuous time median filter described in this paper.  Using a different derivation than that given here, they give 
two distinct definitions which give the upper and lower limits in the indeterminate situation described above, and 
resolve the difference in favor of the upper limit.  Their paper also formalizes the relationship between the discrete 
time and continuous time filters. 

 



 
2.4.  Midrange Filter 

The midrange filter outputs the average of the minimum and maximum values in the filter window.  This 
filter generalizes very easily to continuous time by using the infimum and supremum.  The midrange filter output, 
MIDRct, of an input signal f(t) at t=to for window size w is: 

 
MIDRct {f([to-w/2, to+w/2])} = 0.5 • sup { f([to-w/2, to+w/2]) } + 0.5 • inf { f([to-w/2, to+w/2]) } 

 
The midrange filter is neither good at suppressing impulses nor preserving edges, but yields good results 

on signals corrupted by uniformly-distributed noise.  Because of it is the average of two extremum operations, it 
resembles in some situations the pseudomedian filter.  In fact, the midrange filter is the average of the 
morphological erosion and dilation of a signal or image. 

 
3.  RESPONSE TO PERIODIC SIGNALS 

 
3.1  Assumptions  

In this section we derive a type of "response curve" for the four filters under consideration to three 
periodic waves:  triangle waves, sinusoidal waves, and square waves.  Several assumptions underlying the 
response curves need to be clarified before proceeding, however. 

 
First, the reponse curves developed here do not give the filter response to a combination of frequencies, 

but instead only to a single frequency of a particular periodic signal.  The curves are derived by determining how 
the response of the filter changes as the frequency of a single periodic signal is varied.  The superposition 
principle, used extensively for linear filters, does not apply to the nonlinear filters in this study. 

 
Second, "response" is used here only to denote amplitude and phase of the output as compared to the 

input.  Any distortion induced by the filter is not considered in the response analysis; the distortion analysis using a 
correlation measure provides information on these aspects of the filter behavior.  The "amplitude response" values 
in this paper give the ratio of the peak values of the filtered signal to the peak values of the unfiltered signal.  Many 
of the filtered signals exhibit shape distortion, especially median-filtered signals and all filtered signals with very 
small amplitudes.  The filtered signals always have the same basic period as the input signals, however.  The 
"phase response" is assumed to be the phase relationship between filtered and unfiltered signal peaks; under this 
assumption, the phase of the filtered signal is always 0 or 180°.  To simplify the presentation of the data, we 
represent a filtered signal 180° out of phase with the original as having a negative amplitude response, which is the 
practical effect of this phase shift. 

 
Third, each filter responds differently to different types of periodic signals.  This is clearly because the 

filters are nonlinear, but is also due in small part to the assumptions used to define "response."  The results indicate 
similarities in a filter's response to many types of periodic signals that reveal some general characteristics of the 
filter, however. 

 
Finally, the response of actual discrete time filters varies significantly from the responses shown in this 

section.  These differences arise not only from assumptions inherent in converting discrete time filters to continuous 
time but also from sampling and quantization effects. 

 



3.2.  Response to Triangle Waves 
One input signal for which it is easy to determine the peak output values of the various filters is the triangle 

wave.  In fact, the response may be represented in a closed form as a function of the input signal frequency.  For 
the pseudomedian filter, the ratio of the peaks of the filtered and unfiltered signals will be represented by Ptr(f), 
where f is the frequency of the signal given in units of cycles per filter window length, which will be abbreviated 
cy/w. 

 Ptr(f) = 1 - f/2, 0 = f = 2 cy/w 
  0, f > 2 cy/w 
 
The response of the median filter to triangle waves, Mtr(f), is quite different: 
 Mtr(f) = 1 - f, 0 = f = 1 1/3 cy/w 
  f/2 - 1, 1 1/3 cy/w < f = 2 2/5 cy/w 
  1 - f/3, 2 2/5 cy/w < f = 3 3/7 cy/w 
  . . . etc. 

Or, more formally, 

 

 
M t r ( f ) = 1 - f 

2 n + 1 , 2 n + 2 n 
4 n + 1 

c y 
w ≤ f ≤ 2 n + 1 + 2 n + 1 

4 n + 3 
c y 

w 
f 

2 n + 2 - 1 , 2 n + 1 + 2 n 
4 n + 3 

c y 
w ≤ f ≤ 2 n + 2 + 2 n + 2 

4 n + 5 
c y 

w  
 where n = 0, 1, 2, 3, . . . 
 
These response curves are illustrated in Figure 1 below. 
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Figure 1.  Response of pseudomedian and median filters to triangle waves. 

 
Similar response curves derived for the average and midrange filters offer comparisons between these 

filters and the median and pseudomedian filters.  The response of the average filter to triangle waves, Atr(f), is: 
 Atr(f) = (-1)n [ -f + (2n+1) - n(n+1)/f ], n cy/w = f = (n+1) cy/w 
  where n = 0, 1, 2, 3, . . . 
 



The response of the midrange filter to triangle waves, Rtr(f), is simply: 
 Rtr(f) = 1 - f, 0 = f = 1 cy/w 
  0, f > 1 cy/w 
 
These response curves are illustrated in Figure 2 below. 
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Figure 2.  Response of midrange and average filters to triangle waves. 

 
A comparison of Figures 1 and 2 demonstrates that the median and average filters have similar responses 

to triangle waves, while pseudomedian and midrange filters also have closely related responses.  In fact, a 
midrange filter has the identical peak response to a pseudomedian filter with a window twice as wide as that of the 
midrange filter.  This fact is related to the effective window size change created by sequential erosion and dilation 
when computing the morphological open and close3. 

 
3.3.  Sinusoidal Waves 

Sinusoidal waves resemble triangle waves in many respects, and therefore one would expect the response 
curves of the filters to sinusoidal waves to be similar the curves for triangle waves.  Indeed, the most obvious 
difference between the response curves is sinusoidal curves introduced where there were previously straight lines. 
The pseudomedian filter response to sinusoidal waves, Psn(f), is given by: 

 Psn(f) = 1/2 (1 + cos pf/2), 0 = f = 2 cy/w 
  0, f > 2 cy/w 
For the median filter acting on sinusoidal waves, the response Msn(f) is: 
 Msn(f) = cos (pf/2), 0 = f = 1 1/3 cy/w 
  -cos (pf/4), 1 1/3 cy/w < f = 2 2/5 cy/w 
  cos (pf/6), 2 2/5 cy/w < f = 3 3/7 cy/w 
  . . . etc. 

Or, more formally, 



 

 
M s n ( f ) = c o s π  f 

4 n + 2 , 2 n + 2 n 
4 n + 1 

c y 
w ≤ f ≤ 2 n + 1 + 2 n + 1 

4 n + 3 
c y 

w 

- c o s π  f 
4 n + 4 , 2 n + 1 + 2 n 

4 n + 3 
c y 

w ≤ f ≤ 2 n + 2 + 2 n + 2 
4 n + 5 

c y 
w  

These curves are plotted in Figure 3 below. 
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Figure 3.  Response of pseudomedian and median filters to sinusoidal waves. 

 
Figures 1 and 3 show the similarities in these filters' responses to triangle and sinusoidal waves.  To 

complete the comparison with the average and midrange filters, the expressions for these filters' responses to 
sinusoidal waves are given below and plotted in Figure 4.  Asn(f) is the response of the average filter to sinusoidal 
waves and Rsn(f) is the response of the midrange filter to sinusoidal waves. 

 Asn(f) = sinc pf, f = 0 
 
 Rsn(f) = 1/2 (1 + cos pf), 0 = f = 1 cy/w 
  0, f > 1 cy/w 
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Figure 4.  Response of average and midrange filters to sinusoidal waves. 



The above results show some very significant similarities and differences between the filters.  The 
pseudomedian filter has a uniformly decreasing response from unity to zero to sinusoidal and triangular waves as 
the frequency increases from zero to two cycles per window.  At frequencies above two cycles per window, the 
pseudomedian filter always gives zero output (in continuous time) for triangle and sinusoidal waves.  More 
generally, the pseudomedian filter reduces any vertically symmetric periodic signal of frequency greater than or 
equal two cycles per window to a constant output equal to the point of symmetry.  The midrange filter gives a 
similar result, except that it produces a constant output for all frequencies at and above one cycle per window.  
The median filter, however, does not block high frequency signals, and in fact exhibits phase inversion (180° 
phase shift) for frequencies between one and two cycles per window (and also for 3-4 cy/w, 5-6 cy/w, and so 
forth).  The average filter has responses similar to those of the median filter for triangle and sinusoidal waves, 
including phase inversion in the same frequency ranges.  These similarities are understandable since both the 
median and average filters are inherently low-pass and these examples do not demonstrate the edge-preserving or 
impulse-removing abilities of the median filter. 

 
3.4.  Square Waves 

The response of the filters to square waves is easy to analyze.  The median filter may only have two 
distinct output values, since there are only two different input values for a square wave, and the pseudomedian 
and midrange filters may have only three distinct output values.  The average filter, however, is not similarly limited 
in its outputs.  The responses of the four filters to square waves are given below. 

 
Pseudomedian: Psq(f) =  1, 0 = f < 1 cy/w 
  0, f > 1 cy/w 
 
Median: Msq(f) = 1, (2n) cy/w < f < (2n+1) cy/w 
  -1, (2n+1) cy/w < f < (2n+2) cy/w 
   where n = 0, 1, 2, 3, . . . 
 
Midrange: Rsq(f) = 1, 0 = f < 1/2 cy/w 
  0, f > 1/2 cy/w 
 
Average: Asq(f) = 1 - 2n/f, (2n-1/2) cy/w < f < (2n+1/2) cy/w 
  -1 + (2n+1)/f (2n+1/2) cy/w < f < (2n+3/2) cy/w 
   where n = 0, 1, 2, 3, . . . 
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Figure 5.  Response of pseudomedian and median filters to square waves. 
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Figure 6.  Response of midrange and average filters to square waves. 

 
Once again, the midrange and pseudomedian filter have responses differing by a factor of two in 

frequency.  The median and average filters, however, respond quite differently to square waves.  They both still 
exhibit phase inversion, but the median filter does not attenuate square waves at all.  This is because square waves 
are bi-valued and therefore are either infinite-length roots or oscillatory roots of the median filter5.  In contrast, the 
output of the pseudomedian filter for fast-fluctuating (greater than 2 cy/w) bi-valued signals is a constant value. 

 
The relationship between the continuous time and discrete time median filters has been formalized by 

Fitch, Coyle, and Gallagher4.  The relationship between the other continuous and discrete filters has not been 
demonstrated, but results given by Schulze6 show excellent agreement between the continuous time filters and 
discrete time filters with large window sizes.  Discrete filters with smaller window sizes show significant variance 
from the continuous time results, but most of the differences can be easily explained by sampling, quantization, and 
windowing effects.  In any case, the general properties of the filters demonstrated in continuous time are generally 
valid in discrete time as well. 

 
4.  DISTORTION ANALYSIS 

 
The response curves given in the preceding section are only a comparison of the amplitudes of the input 

and output signals and provide no information about how extensively the filters modify the shapes of the 
waveforms.  To supplement the amplitude information with information about the distortion induced by the filters, 
we investigated the use of the statistical correlation between the input and output.  However, the correlation is 
very sensitive to amplitude and phase differences between the signals, so a correlation taken directly between the 
input and output yields much the same result as the above response curves.  To restrict the measure only to the 
change in shape of the waveform, the output signal is adjusted to compensate for changes in the amplitude and 
phase of the signal.  The resulting correlation measure is restricted to the range 0 to 1, since negative correlation 
indicates a phase shift.  Correlation equal to +1 indicates exact correspondence between signals, while correlation 
equal to 0 indicates no correspondence at all, as between a periodic signal and its DC component. 

Consider a continuous input signal x(t) and the corresponding filter output y(t), both with period T.  Define 
the gain of the filter operating on the signal x(t) to be: 



 

G A I N = 

[ y ( t ) ] 2 d t 
k 

k + T 
1 

2 

[ x ( t ) ] 
2 

d t 
k 

k + T 
1 

2 

 
 
where k is an arbitrary constant.  For frequencies where the output signal is 180° out of phase with the input 
signal, this GAIN figure is negated to adjust for the phase shift.  This is only valid for vertically symmetric periodic 
signals such as those considered in this paper.  The correlation figure is then: 

 

C O R R = 1 - 

x ( t ) - 1 
G A I N 

y ( t ) 
2 

d t 

k 

k + T 
1 

2 

[ x ( t ) ] 
2 

d t 
k 

k + T 
1 

2 

 
 
Unfortunately, deriving expressions for the gain and correlation in continuous time is extremely difficult, 

since the value of the output must be computed at all times for all frequencies for each signal and filter, instead of 
merely deducing the peak amplitude of the output.  To give some indication of how the four filters distort the 
signals considered in this paper, we have computed the gain and correlation digitally (using summations over one 
period instead of integrals) for 75-wide filters.  The triangle, sinusoidal, and square wave signals were considered 
at frequencies from 0 to 4 cy/w in increments of 0.05 cy/w. The results are shown in Figures 7, 8, and 9 below.  
We chose very wide filter windows to minimize the discrete time effects.  These results show that the 
pseudomedian filter has very high correlation (that is, very low distortion) throughout most of its passband for all 
three input signals.  The median filter distorts the triangle and sinusoidal waves much more than the square wave, 
which is expected from its edge preserving and impulse removing abilities.  The average filter is the best of the four 
filters at preserving the sinusoidal waveform, which is understandable because this filter smooths signals to create 
only gradual changes, much like those in the original sinusoid.  The midrange filter causes particularly high 
distortion on the square wave because it destroys edges.  The distortion analysis shows that the pseudomedian 
filter distorts these input signals in its passband less than any of the other filters except for the average filter on 
sinusoidal waves. 

 
5.  CONCLUSIONS 

 
The continuous time filter analysis demonstrates the similarities and differences among the pseudomedian, 

median, average, and midrange filters.  Comparing only the peak amplitude response of the filters to triangle, 
sinusoidal, and square waves highlights relationships between the pseudomedian and midrange filters and between 
the median and average filters.  Distortion analysis, however, highlights the differences in responses between the 
edge-preserving filters (median and pseudomedian) and the edge-destroying filters (average and midrange).  The 
pseudomedian and midrange filters are shown to completely attenuate any symmetric periodic signal above a 



certain frequency (2 and 1 cycles per window length, respectively), while the median and average filters always 
give some periodic, often phase-inverted, output to such high-frequency inputs.  In addition, the pseudomedian 
filter distorts periodic signals much less in most cases than the other filters. 

 
Although the continuous time analysis of the filters cannot be directly applied to filters operating in discrete 

time, the general behavior of the filters relative to one another remains the same in the discrete case.  For example, 
the response of the median filter to square waves clearly shows why infinite-length fast-fluctuating bi-valued roots 
and oscillating roots exist for this filter in discrete time.  The response of the pseudomedian filter to square waves 
in continuous time indicates that it does not have any such fast-fluctuating roots, and indeed this is the case6.  This 
paper has also focused exclusively on the filters in one dimension, so direct application of these results to two 
dimensions is not possible.  Again, though, the general behavior the filters demonstrate in this one-dimensional 
analysis has implications for their two-dimensional behavior, especially with respect to their susceptibility to high-
frequency noise and the amount of distortion they induce in an image. 
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Figure 7.  Correlation curves for 75-wide filters acting on triangle waves. 

 

43210
0.0

0.2

0.4

0.6

0.8

1.0

frequency (cy/w)

co
rr

el
at

io
n

 
43210

0.0

0.2

0.4

0.6

0.8

1.0

1.2

frequency (cy/w)

co
rr

el
at

io
n

 
Figure 8.  Correlation curves for 75-wide filters acting on sinusoidal waves.  (Legends as in Fig. 7.) 
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Figure 9.  Correlation curves for 75-wide filters acting on square waves.  (Legends as in Fig. 7.) 


